Building Competent Models: Ensembles for Unlearning Single Feature
Artifacts

Abstract

Large, cornerstone datasets used for nat-
ural language inference (NLI) have docu-
mented dataset biases, often reflecting id-
iosyncrasies in the collection of the data
or biases in the data sampling procedure.
These dataset artifacts introduce the risk
of learning spurious single feature heuris-
tics during the training process, reflecting
poorly on a model’s performance out of
sample. In this paper, I employ the com-
petency problem framework introduced in
(Gardner et al., 2021) to discover and de-
scribe dataset artifacts in the SNLI dataset
(Bowman et al., 2015). I then fine-tune
an implementation of ELECTRA-small
(Clark et al., 2020b) on the SNLI data,
and evaluate its reliance on learned sin-
gle feature associations. Finally, I explore
the use of a mixed capacity ensemble for
unlearning dataset artifacts. Importantly,
I discuss the relationship between mixed
capacity ensembles and the competency
framework, while highlighting its effec-
tiveness at addressing single feature arti-
facts.

1 Introduction

Popular natural language inference (NLI) datasets
are known to contain biases. Most commonly,
datasets contain single words which have a high
frequency of appearing alongside particular la-
bels. For example, words like disgust” and “bor-
ing” could appear attached to a poor review with
an elevated frequency in a movie review dataset.
While these words can be helpful for prediction in
the context of the training data, learning a strong
weight on a particular word can lead to poor per-
formance out of sample. In this paper I syn-

thesize the competency problems framework with
work done on mixed capacity ensemble models
to show a workflow for automatically identify-
ing and mitigating dataset artifacts present in the
SNLI dataset. In section 2 of this paper I char-
acterize examples in the SNLI dataset (Bowman
et al., 2015) which can be classified as “compe-
tency problems”. The competency problem frame-
work, defined further in section 2, provides an au-
tomated way of classifying single features in a
dataset as sources of learned bias. In section 3,
I train an ELECTRA-small model on the SNLI
training data, and demonstrate evidence that the
model learns harmful heuristics identified under
the competency problem framework. I then pro-
pose and implement a mixed capacity ensemble
(MCE) in section 4, which seeks to debias the
ELECTRA-small model by allowing it to train in
an ensemble with a lower capacity model. Finally,
in section 5 I compare results from the two mod-
els, finding significant improvements in terms of
bias and performance on examples high in dataset
artifacts. I observe a small decline on in-domain
accuracy, but the trade off is offset by improve-
ments in out of domain accuracy and an overall
reduction in learned bias.

2 Dataset Artifacts Under the
Competency Assumption

Dataset artifacts are features or characteristics of a
dataset which encourage a learner to develop mis-
leading associations between those features and
target labels in the data. Dataset artifacts often
arise as a result of how data is collected. In this
paper, I analyze the existence of artifacts in the
SNLI (Bowman et al., 2015) dataset, a large cor-
pus of text data, hand-annotated by human volun-
teers. Each example in the dataset is a premise-
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hypothesis pair, labeled as “’contradiction”, “neu-
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Figure 1: Dataset Artifacts in SNLI

tral”, or “entailment”. The examples in the SNLI
dataset are generated by providing a human anno-
tator with a premise, and asking them to return a
hypothesis which contradicts the premise, entails
the premise, and one hypothesis which is neutral.

A consequence of the SNLI sampling process
is that human annotators are likely to fall back on
a set of common heuristics when asked to gener-
ate an example hypothesis. For example, given a
premise about an individual spending time with
other people, a human labeler might use words
like ”nobody” or ”no one” to generate a contra-
dicting hypothesis. Heuristics like these can in-
troduce dataset artifacts by generating data where
single words are heavily correlated with a single
label.

Fitting a model which has learned potentially
strong associations between single words and la-
bels is dangerous in practice. While these sin-
gle word features are likely to be useful for per-
forming in-domain prediction, over fitting on fea-
tures related to these artifacts can lead to poor per-
formance on out of domain tasks. Furthermore,
reliance on single word features reflects a lack
of true natural language understanding from the
learner. No single word should contain enough in-
formation to make a confident prediction on any
example. Single word features which drive the
model to predict a particular label fall into a class
of artifacts known as competency problems.

Introduced by (Gardner et al., 2021), a com-
petency problem occurs when the marginal dis-
tribution of labels, given a single word, diverges
from the uniform distribution. In the context of the
SNLI dataset, that means for each single-word fea-
ture x;, and each label y € {0, 1}3, a competency
problem arises when p(y|z;) # % I refer to this as

the “competency assumption”, as it reflects the as-
sumption that a competent learner, given a single-
word, over a large number of guesses should not
guess one label more than another. This assump-
tion reflects the fact that no single word should im-
ply a particular label, as entailment is derived from
deeper semantics embedded in each example. An
additional benefit to defining competency prob-
lems, is that we now have a generalized method
for exploring artifacts in the SNLI dataset. More
specifically, the competency assumption implies
the following hypothesis test:

Let p be the empirical probability of observ-
ing a label given a single word. By the compe-
tency assumption, I test the hypothesis that the true
marginal distribution of the labels, given a single
word, is uniform. That is pg = % To test this hy-
pothesis, I compute the following z-test statistic:

2= (1

Figure 1 shows the result of testing this hypoth-
esis on every word-label pair in the SNLI dataset.
In the figure, the dotted line represents the rejec-
tion threshold with points above the line represent-
ing word-label pairs for which I reject the null hy-
pothesis that p = é As alluded to, negation words
such as “nobody” jump out as candidate artifacts,
suggesting human annotators fall back on negation
words for creating contradictions. Additionally,
words such as sleeping and cat have heavy asso-
ciations with the contradiction label. Sleeping is
a word that can easily contradict premises where
the subject is taking an action (other than sleep-
ing). Cat is a word that may be used to contra-
dict premises that are about dogs (or other pets).
Entailment artifacts seem to follow the pattern of
generic words. For example, words like outdoors
and outside can be used to create entailment hy-
pothesis for any premise that involves the subject
engaging in actions outside. Words such as people
can be used to create entailment for any premise
that involves more than one person. Lastly, neu-
tral labels seem to have a large number of artifacts
which reflect subjective adjectives. Words like sad
and favorite can be used to create neutral hypoth-
esis in the case of premises that don’t qualify how
the subject feels in a given situation. Furthermore,
words like tall can be used to create easy neutral
hypothesis given premises which don’t specify the
height of a subject. This suggests that human an-



Train Set  Class Apy

SNLI entailment +15.1%
SNLI neutral +12.8%
SNLI contradiction +17.1%

Table 1: Average difference in predicted class be-
tween top 20 z* and bottom 20 z* tokens using
ELECTRA-small fine-tuned on SNLI

notators are likely to add unrelated or uncertain
information to a premise when asked to generate
a neutral hypothesis.

Now that word-label pairs failing the compe-
tency assumption have been identified, the next
goal is to understand if a model, trained on the
SNLI data, learns short-cuts from this set of com-
petency problems.

3 Evaluating Model Bias

While it’s clear that the SNLI dataset carries
dataset artifacts introduced by heuristics used by
human annotators, it remains to be shown that a
learner actually learns these short-cuts. To evalu-
ate the empirical presence of model bias learned
from dataset artifacts, I fine-tune a pre-trained
ELECTRA-small model (Clark et al., 2020b) us-
ing the SNLI dataset. In this exercise, I train the
model for three epochs on the SNLI training set,
using a learning rate of 5 x 10~° with weight decay
if 1 x 102, and a batch size of sixteen. The model
achieves a test accuracy of 0.895 on the SNLI test
data.

To evaluate the model’s reliance on dataset ar-
tifacts I replicate an experiment from (Gardner et
al., 2021). Each word that is present more than
twenty times across the premises and hypothesis
in the SNLI data is used to create synthetic exam-
ples. Each synthetic example is created by placing
a single word in either the premise or hypothesis
slot, leaving the other slot empty. For each of these
synthetic examples, I take a forward pass with the
model and recover the logit predictions for each
of the classes. These predictions are then aver-
aged between the hypothesis only example and
the premise only example. The goal of this ex-
periment is to recover an estimate of the marginal
probability of a label given each word. Table 1
presents the results of this experiment.

For each label, I take the top twenty high-
est scoring words and the bottom twenty low-
est scoring words from our test of the com-

Dominant Class Accuracy Avg. Miss N

entailment 0.439 0.720 9,815
neutral 0.437 0.685 2,728
contradiction 0.437 0.670 3,754

Table 2: ELECTRA-small Model Performance on
Test Examples that include top 20 z* tokens

petency assumption, and compare mean differ-
ences in p(y|z;). More specifically, I construct
column three of table 1 by computing Ap, =
Darzag, PYlT) = Xoecon P(ylai). By com-
paring high-scoring tokens to a set of stable low-
scoring tokens, I can recover an approximation of
how much, on average, the model biases its pre-
dictions when given examples containing compe-
tency problems. Table 1 shows biases larger than
10% across all classes, with the strongest average
bias being 17.1% for the contradiction class. The
large positive bias estimates from this experiment
provide evidence that ELECTRA-small is learn-
ing single-feature heuristics that have strong influ-
ence over its predictions. Returning briefly to the
set of word-label artifact examples discussed in
section 2, our experiment reveals strong evidence
that these particular single-word features are being
used as short-cuts by the model. Following this
experiment, I recover a p(y|z;) of 0.984 for cat,
and 0.999 for nobody, two of our contradiction ar-
tifact examples. The word “’sleeping” is an excep-
tion, with a p(y = contradiction|z;) = 0.303.
Our entailment artifacts also provide strong evi-
dence of being learned by the model with p(y|z;)
of 0.888 for outdoors, 0.868 for outside, and 0.943
for people. Lastly, our neutral artifact examples
continue to confirm intuition, having a p(y|x;) of
0.859 for favorite, 0.961 for sad, and 0.698 for tall.

While this subset of examples have been se-
lected to highlight extreme cases of competency
artifacts, table 2 provides more general evidence
of the consequences of learned artifacts.

Table 2 captures the accuracy and average miss,
defined as 1 —pJ°"“", on examples from the SNLI
test set which include words, for each label, scor-
ing in the top 20 z* from the earlier hypothesis
test. The average accuracy on this subset of exam-
ples is approximately forty-six percentage points
lower than the accuracy the model achieves on the
full test set. In the case of the artifacts included in

our experiment, predictions on the dominant class



are only about ten percentage points better than
a random guess, showing the pitfall of relying on
these heuristics. Furthermore, the model has an
average miss of 0.692 when test examples contain
one of these artifacts. Not only do these artifacts
have a strong sway over the model’s predictions,
these single-word features encourage the model to
return confident and incorrect predictions on ex-
amples containing problematic words.

4 Building a Competent Model

Having shown that a model trained on the SNLI
dataset will learn competency artifacts, I now look
for a solution to debiasing the model. In (Gardner
et al., 2021) the authors suggest using local ed-
its to introduce examples in training which further
balance the distribution of words over the labels
in the data. However, local edits require human
involvement which runs the risk of introducing
new sources of bias and being potentially costly
in terms of time and effort. Other authors have ex-
plored the possibility of learning a biased model,
fit on known dataset artifacts, and then using the
residual as a feature in the larger model to unlearn
the dataset artifacts (He et al., 2019), or simply
incorporating the biased model into an ensemble
such that the larger model learns from it with each
update (Clark et al., 2019). These methods are
shown to be successful at mitigating model bias,
however they require carefully tuning the model
to unlearn known examples of dataset artifacts.

Instead, I propose learning a mixed capacity
ensemble using model architecture introduced in
(Clark et al., 2020a). To mitigate dataset arti-
facts, I train an ensemble of two models in paral-
lel, a higher-capacity model and a lower-capacity
model. The lower-capacity model is designed to
attend to single-feature correlations present in the
data. By explicitly allowing the lower-capacity
model to encode bias, the ensemble indirectly pe-
nalizes reliance on these features for predictions.
Over time, the higher-capacity model develops
predictions that are independent of the features
captured by the lower-capacity model. Each epoch
I recover predictions from the low-capacity and
higher-capacity models, and combine them as fol-
lows to recover predictions for the ensemble:

gi = softmazx(log(fn(xi)) + log(fi(xi)) + log(py))

gt = softmaz(log(fi(x;) + log(py))
it = softmaz(log(fn(x;) + log(py)))

I then compute the training loss below, with
w = 0.5 to update the ensemble’s weights. The
lower-capacity model contributes to identifying
high-probability artifacts. These are effectively
“discounted” when the ensemble combines its out-
put with the higher-capacity model’s predictions.
The inclusion of log(p,), a uniform prior over the
classes, further discourages over-reliance on indi-
vidual features.

n
L(:gzea gia ysz) = ZL(Qf, yz)+wL(@£7yl) (2)
)

The core principle of this approach lies in the
conditional independence of the two models’ pre-
dictions given the true label y. For a given input
x let fi(x) = x; and fr(x) = x5 represent the
lower-capacity and higher-capacity model outputs,
respectively. As shown in (Clark et al., 2020a), re-
covering the ensemble prediction relies on z;, and
x; being conditionally independent, given y. Suc-
cinctly, the conditional independence assumption
holds if:

P(ylan, x;) o< P(ylzn)Pylz)/P(y)  (3)

This factorization ensures that the ensemble
prediction leverages complementary information
from both models, while penalizing redundant re-
liance on features captured by z;. Conditional in-
dependence ensures that the lower-capacity model
captures the dataset artifacts, allowing the higher-
capacity model to focus on deeper semantic pat-
terns. In practice, conditional independence is en-
couraged through the structure of the loss function
and the separation of responsibilities between the
lower- and higher-capacity models. By ensuring
the lower-capacity model captures artifacts, the
higher-capacity model avoids learning redundant
correlations.

For the empirical exercise, the higher-capacity
model will be the ELECTRA-small model fine-
tuned on the SNLI training data from section 3,



Test Set ELECTRA-small MCE
SNLI 0.889 0.875
HANS 0.493 0.500

Table 3: Model Accuracy on NLI Datasets

while the lower-capacity model will be a uni-
gram bag-of-words multi-layer perceptron. For
the lower-capacity model, I create a vocabulary
of the 10,000 most common words in the SNLI
dataset. Each example from the SNLI data is then
tokenized into a feature vector by first combining
the premise and hypothesis into a single string of
text, and then mapping the count of each word in
the example to its position in the vector. The final
lower-capacity model is a fully-connected 2-layer
neural network with a hidden dimension of 300
and ReLU activation functions.

The benefits to training a mixed-capacity en-
semble (MCE) are two-fold. Firstly, the MCE
is designed to automatically identify and learn
dataset bias introduced by learning simplistic pat-
terns in the training process. This addresses the
concern of introducing bias through human edits
and saves time on what would be spent identify-
ing particular sources of bias. There is an added
benefit of mitigating biases that may have been
unknown to us prior to the modeling step. The
second benefit to training the MCE is that it en-
dogenously captures the competency assumption.
By separating the treatment of single-feature arti-
facts and deeper semantic patterns, the MCE di-
rectly addresses the competency assumption, en-
suring that predictions are not dominated by fea-
tures where P(y|z;) # 3.

5 Results

The MCE described in section 4 is trained for three
epochs with a learning rate of 5 x 10~°, and weight
decay of 1 x 1072, The lower-capacity model’s
loss is down-weighted, setting w = 0.5 as writ-
ten in equation (2). Training the MCE requires
specifying a prior over the classes log(p, ). In line
with the competency assumption, I allow the prior
probability to be the log of the label probability
drawn from the uniform distribution.

Table 3 compares the accuracy of the
ELECTRA-small model to the MCE on the
SNLI test data and the HANS test data (McCoy
et al., 2019). The HANS dataset is a challenge

Train Set  Class Apy
SNLI entailment +13.2%
SNLI neutral +9.5%
SNLI contradiction +15.6%

Table 4: Average difference in predicted class be-
tween top 20 z* and bottom 20 z* tokens using
Mixed Capacity Ensemble

dataset designed to challenge models which
rely on commonly learned heuristics present in
popular SNLI datasets. Both ELECTRA-small
and MCE perform poorly on the HANS dataset,
however the MCE improves on the performance
of the ELECTRA-small. The poor performance
on HANS reflects the dataset’s emphasis on
testing models’ reliance on specific heuristics
(e.g., lexical overlap). The slight improvement
in MCE suggests its ability to reduce reliance on
some heuristics, although additional tuning or
constraints may be required to achieve substantial
gains on this dataset. The ELECTRA-small
model performs better on the SNLI test set by
about one percentage point of accuracy. While the
MCE performs slightly worse on SNLI compared
to ELECTRA-small, this trade-off reflects the
model’s reduced reliance on dataset artifacts.
In practice, this suggests greater robustness to
out-of-distribution data, as indicated by the per-
formance gains on HANS and bias-heavy subsets
of SNLIL

Table 4 revisits the model bias experiment from
section 3, recalculating the 20 highest scoring
words and the 20 lowest scoring words under the
MCE’s predicted probabilities. The MCE shows
clear improvement on the influence of single word
features. Under the MCE our predicted bias for the
entailment class drops by two percentage points,
our predicted bias for the neutral class drops by
over three percentage points, and our predicted
bias for the contradiction class drops by nearly two
percentage points. The results in table 4 show that
predictions on our 20 most problematic word-label
pairs, by label, are becoming more comparable to
our least problematic word-label pairs using the
MCE.

Table 5 parallels the results from table 2, show-
ing the performance of the MCE on the 20 highest
scoring words from the ELECTRA-small model.
These words have been fixed to match the test-



Dominant Class Accuracy Avg. Miss N

entailment 0.875 0.169 9,815
neutral 0.875 0.167 2,728
contradiction 0.879 0.160 3,754

Table 5: MCE Model Performance on Test Exam-
ples that include top 20 z* tokens

ing sets from Table 2 to allow us to compare re-
sults between the ELECTRA-small model and the
MCE. The results in table 5 demonstrate major im-
provements in terms of accuracy and average miss
from the MCE. Average accuracy nearly doubles
on these “hard” examples from the SNLI testing
set, while the average miss made by the MCE is
0.165 compared to the average miss of 0.692 made
by the ELECTRA-small on these same examples.
These results are clear evidence that the MCE is
improving on examples which are high in compe-
tency artifacts, which the ELECTRA-small fails
on. This evidence is encouraging, and suggest that
the MCE is likely a more robust model, out of
sample, than the fine-tuned ELECTRA.

6 Conclusion

In this paper, I demonstrate that mixed capacity
ensemble (MCE) models effectively mitigate the
influence of dataset artifacts on model predictions.
The MCE outperforms a fine-tuned ELECTRA-
small model on in-domain examples with high
artifact influence, showing reduced reliance on
single-word features and addressing competency
problems more robustly. These results indicate
that MCEs represent a step forward in build-
ing more competent models by making compe-
tency an endogenous characteristic of their ar-
chitecture. This paper also highlights the con-
nection between the competency problems frame-
work and the MCE architecture, offering an au-
tomated pipeline for artifact discovery and miti-
gation. While the implementation presented here
does not explicitly model the conditional indepen-
dence constraint modeled in (Clark et al., 2020a),
the findings suggest that doing so would yield even
greater improvements. As such, the results in this
paper likely represent a lower bound on the po-
tential of MCEs. By reducing bias and improv-
ing performance on artifact-heavy examples, this
work lays the groundwork for developing more ro-
bust, fair, and generalizable natural language in-

ference systems. Future research could extend this
framework to broader applications, advancing the
field’s ability to tackle dataset artifacts in a princi-
pled and automated way.
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